Grzegorz Kończak https://orcid.org/0000-0002-4696-8215 , Martyna Kosińska https://orcid.org/0000-0002-5430-227X

© Grzegorz Kończak, Martyna Kosińska Artykuł udostępniony na licencji CC BY-SA 4.0

ARTYKUŁ

(Polski) PDF

STRESZCZENIE

Multiple categories of qualitative variables are often identified in economic and social research. In these cases, contingency tables (two- or multidimensional) are frequently used to report the results of a study. Statistical inference based on data provided in contingency tables involves in most instances the use of the chi-square test of independence or the chi-square test of homogeneity. The form of the statistics in both tests is the same, but the method by which the data are obtained remains different. A sample of size n is drawn from a single population with two classification variables in the first case, and in the second samples from an r population of n1, n2,…, nr sizes are drawn independently, considering a single classifier variable only. It is much less common to make comparisons of structures for more than two qualitative variables simultaneously. The aim of the research described in this article is to present the usefulness of permutation methods in testing the presence of significant differences in the structures of the levels of participation in cultural events based on data contained in multidimensional contingency tables. The application of the permutation test was illustrated through the results of the authors’ own research examining the cultural participation of active users of Internet portals immediately before and during the COVID-19 pandemic. Participation in cinema screenings by gender, age and work status was analysed. The research results confirmed that the pandemic had a significant impact on participation in cinema screenings.

SŁOWA KLUCZOWE

statistical inference, multidimensional contingency tables, permutation tests

JEL

C12, C15, C18

BIBLIOGRAFIA

Agresti, A., & Coull, B. A. (1998). Approximate Is Better Than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52(2), 119–126. https://doi.org/10.2307/2685469.

Agresti, A., & Gottard, A. (2007). Independence in multi-way contingency tables: S.N. Roy’s breakthroughs and later developments. Journal of Statistical Planning and Inference, 137(11), 3216–3226. https://doi.org/10.1016/j.jspi.2007.03.006.

Berger, R. L., & Boos, D. D. (1994). P Values Maximized Over a Confidence Set for the Nuisance Parameter. Journal of the American Statistical Association, 89(427), 1012–1016. https://doi.org/10.1080/01621459.1994.10476836.

Berry, K. J., Johnston, J. E., & Mielke Jr., P. W. (2014). A Chronicle of Permutation Statistical Methods: 1920–2000, and Beyond. Springer. https://doi.org/10.1007/978-3-319-02744-9.

Berry, K. J., Johnston, J. E., & Mielke Jr., P. W. (2018). The Measurement of Association. A Permutation Statistical Approach. Springer. https://doi.org/10.1007/978-3-319-98926-6.

Berry, K. J., Mielke Jr., P. W., & Johnston, J. E. (2016). Permutation Statistical Methods. An Integrated Approach. Springer. https://doi.org/10.1007/978-3-319-28770-6.

Cheon, S.-Y. (2012). Approximating Exact Test of Mutual Independence in Multiway Contingency Tables via Stochastic Approximation Monte Carlo. The Korean Journal of Applied Statistics, 25(5), 837–846. https://doi.org/10.5351/KJAS.2012.25.5.837.

Christensen, R. (1990). Log-Linear Models. Springer. https://doi.org/10.1007/978-1-4757-4111-7.

Domański, C. (1979). Statystyczne testy nieparametryczne. Państwowe Wydawnictwo Ekonomiczne.

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall. https://doi.org/10.1201/9780429246593.

Ernst, M. D. (2004). Permutation Methods: A Basis for Exact Inference. Statistical Science, 19(4), 676–685. https://doi.org/10.1214/088342304000000396.

Fisher, R. A. (1935). The Design of Experiments. Hafner Press.

Fisz, M. (1967). Rachunek prawdopodobieństwa i statystyka matematyczna. Państwowe Wydawnictwo Naukowe.

Friendly, M. (1994). Mosaic Display for Multi-Way Contingency Tables. Journal of the American Statistical Association, 89(425), 190–200. http://dx.doi.org/10.1080/01621459.1994.10476460.

Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses (3rd edition). Springer. https://doi.org/10.1007/b138696.

Greń, J. (1974). Statystyka matematyczna. Modele i zadania. Państwowe Wydawnictwo Naukowe.

Kończak, G. (2012). On testing multi-directional hypotheses in categorical data analysis. In A. Colubi, K. Fokianos, E. J. Kontoghorges, K. Fokianos & G. Gonzalez-Rodrigues (Eds.), 20th International Conference on Computational Statistics (pp. 427–436). International Statistical Institute.

Kończak, G. (2016). Testy permutacyjne. Teoria i zastosowania. Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.

Kończak, G., & Kosińska, M. (2023). O testowaniu istotności różnic w strukturach populacji na podstawie prób o małych liczebnościach. Krakow Review of Economics and Management. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, (3), 145–160. https://doi.org/10.15678/ZNUEK.2023.1001.0308.

Kosińska, M. (2023). Wpływ pandemii COVID-19 na aktywność w wydarzeniach kulturalnych. Studia Ekonomiczne. Gospodarka, Społeczeństwo, Środowisko. Economic Studies. Economy, Society, Environment, (2), 61–73.

Little, R. J. A. (1989). Testing the Equality of Two Independent Binomial Proportions. The American Statistician, 43(4), 283–288. https://doi.org/10.2307/2685390.

O’Gorman, T. W. (2012). Adaptive Tests of Significance Using Permutations of Residuals with R and SAS. Wiley.

Perrone, E., Fontana, R., & Rapallo, F. (2024). Multi-way contingency tables with uniform margins. http://arxiv.org/abs/2404.04343.

Raevskikh, E., Khalid, U., & Benghozi, P. J. (2022). Culture in Times of COVID-19. Resilience, Recovery and Revival. UNESCO. https://www.nck.pl/upload/2023/08/culture-in-times-of-covid-19-resilience-recovery-and-revival.pdf.

Rao, C. R. (1973). Linear Statistical Inference and its Applications (2nd edition). John Wiley & Sons. https://doi.org/10.1002/9780470316436.

Santander. (2023). Sytuacja społeczno-gospodarcza Polski w dobie pandemii. https://odpowiedzialnybiznes.pl/wp-content/uploads/2020/12/FOB_Santander_Sytuacja_spoleczno-gospodarcza_Polski_w_dobie_pandemii.pdf.

Sheskin, D. J. (2004). Handbook of parametric and nonparametric statistical procedures (3rd edition). Chapman & Hall/CRC.

Siegel, S. (1956). Nonparametric Statistics for the Behavioral Science. McGraw-Hill.

Simonoff, J. S. (2003). Analyzing Categorical Data. Springer. https://doi.org/10.1007/978-0-38721727-7.

Stanimir, A. (2011). Analysis of Nominal Data – Multi-way Contingency Table. Mathematical Economics, 7(14), 229–240.

Yates, F. (1934). Contingency Tables Involving Small Numbers and the x2 Test. Supplement to the Journal of the Royal Statistical Society, 1(2), 217–235. https://doi.org/10.2307/2983604.

Zeliaś, A., Pawełek, B., & Wanat, S. (2002). Metody statystyczne. Zadania i sprawdziany. Polskie Wydawnictwo Ekonomiczne.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0